Roots of complex polynomials and Weyl-Heisenberg frame sets
نویسندگان
چکیده
منابع مشابه
Roots of Complex Polynomials and Weyl-heisenberg Frame Sets
A Weyl-Heisenberg frame for L2(R) is a frame consisting of modulates Embg(t) = e 2πimbtg(t) and translates Tnag(t) = g(t − na), m,n ∈ Z, of a fixed function g ∈ L2(R), for a, b ∈ R. A fundamental question is to explicitly represent the families (g, a, b) so that (EmbTnag)m,n∈Z is a frame for L2(R). We will show an interesting connection between this question and a classical problem of Littlewoo...
متن کاملAnalyzing the Weyl-heisenberg Frame Identity
In 1990, Daubechies proved a fundamental identity for WeylHeisenberg systems which is now called the Weyl-Heisenberg Frame Identity. WH-Frame Identity: If g ∈ W (L∞, L), then for all continuous, compactly supported functions f we have: ∑ m,n | < f, EmbTnag > | = 1 b ∑
متن کاملDiscrete Weyl–Heisenberg transforms
Related Articles On the Birkhoff factorization problem for the Heisenberg magnet and nonlinear Schrödinger equations J. Math. Phys. 47, 063501 (2006) Quaternionic root systems and subgroups of the Aut(F4) J. Math. Phys. 47, 043507 (2006) A note on monopole moduli spaces J. Math. Phys. 44, 3517 (2003) Dirichlet forms and symmetric Markovian semigroups on CCR algebras with respect to quasi-free s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2002
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-02-06352-9